-v^2=-23-132

Simple and best practice solution for -v^2=-23-132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -v^2=-23-132 equation:



-v^2=-23-132
We move all terms to the left:
-v^2-(-23-132)=0
We add all the numbers together, and all the variables
-v^2-(-155)=0
We add all the numbers together, and all the variables
-1v^2+155=0
a = -1; b = 0; c = +155;
Δ = b2-4ac
Δ = 02-4·(-1)·155
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{155}}{2*-1}=\frac{0-2\sqrt{155}}{-2} =-\frac{2\sqrt{155}}{-2} =-\frac{\sqrt{155}}{-1} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{155}}{2*-1}=\frac{0+2\sqrt{155}}{-2} =\frac{2\sqrt{155}}{-2} =\frac{\sqrt{155}}{-1} $

See similar equations:

| 5x-1-39=90 | | 12-x=2.35 | | -7+22n=-6n | | 20x-35=8x+45+26 | | 3y=39.y= | | 9c-4=2c+3 | | 53=88-g | | -4+3u=2 | | (3v)/3=-3v-5 | | 1=y/2+7 | | 2/3y+1=16y+8 | | 4x+15=5x+23 | | x+90+53.6=180 | | 58-7x6=0 | | 5h+2=39 | | 0.5x-12+48=90 | | 3x+9=36+6x | | F(3)=7x+5 | | 24-(p+9)=3 | | 89h+45=99h+24 | | -2a+(6+5a)=-3a | | -25=5/2(8r-6)+2r=32 | | 8x-5=6x=29 | | 80-8.49x=46.04 | | 7(y-7)=2(13+1 | | z/30=24 | | -100-50=2x=5x | | 20-13=15x-3x | | V(x)=x(8-2x)(10-2x) | | 10x-5x=90 | | (X+6)(2x+1)=6 | | 13y+17y=99 |

Equations solver categories